Maternal DS-TB Treatment & Prevention

Nicole Salazar-Austin, MD ScM Assistant Professor of Pediatrics Johns Hopkins School of Medicine

TB Burden in Pregnancy is Likely High but Unknown

10.6 million new diagnoses of TB disease in 2022

WHO Global TB Report 2022 2 Sugarman, et al. Lancet Global Health 2014

Slide adapted from Jyoti Mathad, Cornell

TB Risk in Peripartum Women and Children

TB incidence is **2x higher** postpartum than non-pregnant/non-postpartum

Other children in the household are also at high risk of disease

Increased Adverse Maternal and Pregnancy Outcomes

- 4-fold increased maternal mortality
- 3-fold increase morbidity
- 10-fold increased hospitalization
- 4-fold increase anemia
- 2-fold increase cesarean
- 9-fold increase miscarriage

Increased Infant Adverse Outcomes

Study ID	% OR (95% DI) weight TB	affected TB tot	alControl a	fiected Control total
Perinatal death Ricardo Figueroa- Damian- 2001 N. Jana, 1999 N. Jana, 1994 Ricardo Figueroa- Damian- 1998 P.A. Kavganko, 2003 T.Bjerkedal, 1975 Adolfas Pranevièius,2003 Subtotal (<i>I</i> ² = 57.2%, <i>P</i> = 0.029)	9.75 (0.98, 97.01) 12.07 3 4.23 (0.57, 31.18) 14.11 2 7.01 (2.23, 22.06) 21.76 6 23.49 (1.17, 471.95) 51 3 2.31 (0.12, 45.09) 8.63 3 1.00 (0.50, 2.02) 26.16 6 8.86 (0.47, 167.89) 7.76 4 4.20 (1.48, 11.83) 100.00	35 33 79 25 371 546 77	1 2 5 0 1657 0	105 133 318 75 121 113 511 72
Low birth weight Lin, 2009 Tripathy, 2003 A.Ali, 2011 N. Jana, 1999 N. Jana, 1994 P.A. Kavganko, 2003 T.Bjerkedal, 1975 Subtotal (J ² = 53.7%, P = 0.044)	1.36 (1.02, 1.81) 25.82 5 1.13 (0.54, 2.57) 13.22 3 2.40 (0.60, 7.16) 7.64 1 2.70 (1.02, 7.11) 9.32 8 2.64 (1.52, 4.58) 17.69 2 6.99 (1.42, 25, 29) 5.05 3 1.07 (0.69, 1.68) 21.05 2 1.71 (1.20, 2.43) 100.00	15 761 13 110 2 42 1 33 17 79 14 372 11 531	244 14 6 14 52 2 4144	3905 51 42 132 316 121 112 000
Pre-term birth Asuguo- 2012 Lin, 2009 Ricardo Figueroa- Damian- 2001 A.Ali, 2011 N. Jana, 1999 N. Jana, 1994 A.Marynowski, 1971 P.A. Kavganko, 2004 T.Bjerkedal, 1975 Ricardo Figueroa- Damian- 1998 Subtotal ($l^2 = 66.5\%$, $P = 0.001$)	2.44 (0.70, 8.58) 5.80 5 1.01 (0.76, 1.34) 17.95 6 8.93 (0.80, 1.24) 17.95 6 1.70 (0.81, 4.72) 7.68 1 1.22 (0.32, 4.71) 5.22 3 2.37 (1.26, 4.46) 12.42 1 2.32 (1.75, 5.06) 17.490 1 1.27 (0.46, 3.53) 7.67 8 1.05 (0.71, 1.56) 16.37 2 8.86 (1.17, 40.08) 3.42 4 1.69 (1.18, 2.41) 100.00	; 24 ,1 761 ; 35 2 42 1 33 8 79 18 1188 1 96 1 96 1 96 1 35	7 303 5 8 10 35 91 8 5431 2	72 3905 105 42 318 2007 120 108 622 74
Acute fetal distress N. Jana, 1994 N. Jana, 1999 Subtotal ($I^2 = 0.0\%$, $P = 0.538$)	 2.85 (1.24, 5.69) 72.14 1 1.68 (0.49, 5.75) 27.85 4 2.34 (1.22, 4.47) 100.00	2 79 33	20 10	\$18 132
Asphyxia Adolfas Pranovièius,2003 P.A. Kavganko, 2004 P.A. Kavganko, 2003 Subtotal ($I^2 = 46.3\%$, $P = 0.155$) NOTE: weights are from random effects analysis	3.24 (1.11, 9.45) 24.00 1 3.12 (1.44, 6.79) 35.00 2 7.98 (3.98, 14.91) 41.00 1 4.55 (2.40, 8.55) 100.00	5 77 13 96 42 327	5 11 11	72 120 121
0.00212	472			

- 4-fold increased perinatal death
- 2-fold increase LBW
- 2-fold increased PTB
- 2-fold increase acute fetal distress
- 5-fold increase birth asphyxia

Active TB better outcomes Active TB poorer outcomes

Pregnancy-related Physiologic Changes that can Alter Drug Exposures

Key Physiologic Changes

- Changes in body composition
- Changes in plasma proteins
- Increased cardiac output
- Decreased lung capacity
- Changes in hepatic metabolism
- Decreased gastric emptying
- Decreased stomach pH
- Increased GFR

DS-TB Treatment during Pregnancy

Drug	Pharmacokinetics	Crosses Placenta	Fetal Toxicity	Chest feeding Compatibility	Terato- genicity	Concerns for Pregnant Persons
RIF	No dose adjustment Reduced CL in 3 rd trimester (14%)	Yes	Hemorrhage	Yes (0.05-5%)	Yes	Many DDIs (DTG, PIs, OCP, etc.) Effect on embryo development in animals not humans Bleeding risk , may require vitamin K
INH	No dose adjustment Low exposures?*	Yes	CNS defects	Yes (< 5%)	No	Hepatotoxicity Possible Effects on embryo development, no teratogenicity
PZA	No dose adjustment No difference CL, F	Unknown	Jaundice	UD (excreted)	UD	Unknown effect on fetus; WHO and CDC recommendations differ
EMB	No dose adjustment No difference CL, F	Yes	Jaundice	UD (< 5%)	Yes	Increased teratogenicity (high doses) in animals but not humans

*Unclear if related to pregnancy, specimen handling, or NAT2

Pregnancy-related Immune Changes

Figure 1. Changes in Hormone Levels and Immune-System Characteristics during Pregnancy.

As pregnancy advances, T-cell activity, natural killer cell activity, and possibly B-cell activity are reduced, whereas α -defensin levels and monocyte, dendriticcell, and polymorphonuclear-cell activity are increased.^{49,50} The severity of some infections (particularly influenza, malaria, hepatitis E, and herpes simplex virus hepatitis and dissemination) increases with advancing pregnancy.

- Immune alterations during pregnancy
 - May explain severity and susceptibility to some infections during pregnancy
 - Poorly understood
- Debate over whether:
 - Pregnancy increases TB risk
 - Pregnancy affects TB treatment outcomes

Do Pregnancy-related Immune Changes Alter DS-TB Treatment Outcomes?

DS-TB Treatment Outcomes in Pregnant Persons

- Cohort Cape Town, South Africa 2016:
 - 74 pregnant women with and without HIV diagnosed with TB in pregnancy or postpartum
 - 45% with unfavorable outcomes (<u>LTFU 35%</u>, Tx failure 3%, and Death 7%)
 - Poor outcomes associated with LBW infants (RR 3.8, Cl 1.4-10.5)
 - Poor outcomes not associated with maternal HIV, EPTB, age, intra vs postpartum TB diagnosis, anemia, or bacteriologic confirmation
- Cohort Lima, Peru 2020
 - Women of child-bearing age with TB, with (n=36) and without (n=1298) pregnancy
 - 96.6% of pregnant vs 97.3% of non-pregnant women had successful treatment outcomes

When treated early and appropriately, pregnant persons can have successful TB treatment outcomes

Bekker, et al. PLoS One 2016; van der Water BMC ID 2020

HPMZ: What is Known About the Use of RPT and MFX During Pregnancy?

Drug	Pharmacokinetics	Crosses Placenta	Fetal Toxicity	Chest feeding Compatibility	Terato- genicity	Concerns for Pregnant Persons
RPT	Unknown Increases CL but no dose adj needed in 3HP	unknown	?	unknown	?	Many DDIs (DTG, PIs, OCP, etc.) Unclear bleeding risk , may require vitamin K
MFX	No dose adjustment	Yes	Possible bone	unknown	No	Increased teratogenicity (high doses) in animals but not humans
INH	No dose adjustment Low exposures?*	Yes	CNS defects	Yes (< 5%)	No	Hepatotoxicity Possible Effects on embryo development, no teratogenicity
PZA	No dose adjustment No difference CL, F	Unknown	Jaundice	UD (excreted)	UD	Unknown effect on fetus; WHO and CDC recommendations differ

Gupta, et al. PLOS Medicine 2019; Abdelwahab, et al. AAC 2020; Mathad, et al. CID 2022

RPT Use During Pregnancy

- Embryofetal toxicity and major fetal malformations in animal studies
 - Cleft palate, R aortic arch, delayed ossification, and increased ribs
 - \downarrow BW & gestational survival
 - \uparrow stillbirth, and \uparrow (slight) post-natal mortality
- PREVENT TB and iADHERE Trials of 3HP
 - No unexpected fetal loss or congenital anomalies
 - Preliminary reassurance when RPT needs to be used
- IMPAACT 2001
 - Generally safe, no treatment-related AEs (incl bleeding)
 - Not powered for safety

FQ Restrictions in Pediatrics and Pregnancy are Largely Driven by Animal Studies

- FQ in Juvenile Beagle Dogs and Guinea Pigs
 - Cartilage damage and arthropathies \rightarrow fetal bone malformation?
- Fetotoxicity but not teratogenicity in rats and rabbits
 - \downarrow fetal birth weights, \uparrow prenatal loss, \uparrow neonatal death and \uparrow therapy-related maternal mortality
 - Delayed fetal skeletal development
 - ↑ rib and vertebral malformations
- No adverse embryonic or fetal development *in monkeys*

Pregnancy Outcomes following FQ Exposure Systematic Review & Meta-analysis

- 12 studies
- 339,966 pregnancies
- >2500 FQ-exposed pregnancies
- Predominantly 1st trimester exposure

	expos	ed	unexpo	sed		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Random, 95% Cl	
Berkovitch	0	38	1	38	0.4%	0.32 [0.01, 8.22]			
Cooper	8	439	102	3400	7.8%	0.60 [0.29, 1.24]			
Crider	42	56	1832	2459	11.0%	1.03 [0.56, 1.89]			
Dudas	2	6	22841	60988	1.4%	0.84 [0.15, 4.56]			
Larsen	2	47	564	17259	2.0%	1.32 [0.32, 5.44]			
Loebstein	3	136	5	188	2.0%	0.83 [0.19, 3.51]			
Matok	32	543	5268	96931	32.0%	1.09 [0.76, 1.56]			
Padberg	45	949	227	3796	38.2%	0.78 [0.56, 1.09]			
Watanabe	2	194	2	217	1.1%	1.12 [0.16, 8.03]			
Wilton	0	32	0	23		Not estimable			
Wogelius	4	130	6389	151941	4.1%	0.72 [0.27, 1.96]			
Total (95% CI)		2570		337240	100.0%	0.89 [0.72, 1.09]		•	
Total events	140		37231						
Heterogeneity: Tau ² =	0.00; Chi ²	= 4.08, 0	lf = 9 (P =	0.91); ²	= 0%				+
Test for overall effect:	Z = 1.16 (P	= 0.24)					0.02	0.1 1 1 decreased risk increased risk	0 50 sk

- No increased risk of birth defects, stillbirths, prematurity or LBW with 1st trimester use
- Possible association between FQ use at any time of pregnancy and spontaneous abortion
 - Result driven by one study with important differences in controls
- Conclusion: Restrictions on prescribing FQ during the 1st trimester should be reconsidered
 - can lead to sub-optimal treatment of infection and undue excessive anxiety

Ziv, et al. Pharm Res 2018; Yefet et al. 2018; Loebstein, et. al. AAC 1998; Bar-Oz Eur J OBGYN and Repro Bio 2009

Safety of Prolonged MFX Use During Pregnancy

- Meta-analysis of 10 studies of DR-TB in pregnancy
- 288 women including 100+ on MFX
- Safety of prolonged FQ use during pregnancy
- Adverse Pregnancy Outcome
 - Prematurity, pregnancy loss, low birth weight, stillbirth
 - Similar/lower rates than gen population
 - No obvious safety concerns but small sample

rigure 5. Pobled Proportion on	regnancy outcom	ics Among Tut	5	
• 0.0000		Does not	Favors	
Source	ES (95% CI)	favor outcome	outcome We	eig
Preterm			Li	
Shin et al, ²² 2003	0.0 (0.0-41.0)		2.4	.4
Palacios et al, ²¹ 2009	2.6 (0.1-13.8)		4.0	.0
Tabarsi et al, ²⁰ 2011	0.0 (0.0-52.2)		2.0	.0
van der Walt et al, 17 2020	0.0 (0.0-13.7)		3.:	.7
Mokhele et al, ¹⁴ 2021	55.0 (31.5-76.9)			.5
Loveday et al, ¹⁵ 2021 ^a	25.7 (17.8-34.9)		4.5	.5
Subtotal: I ² = 87.7%; P <.001	9.5 (0.0-29.0)		20	0.0
Pregnancy loss				
Shin et al, ²² 2003	0.0 (0.0-41.0)		2.4	.4
Palacios et al, ²¹ 2009	13.2 (4.4-28.1)		4.0	.0
Tabarsi et al, ²⁰ 2011	0.0 (0.0-52.2)		2.0	.0
van der Walt et al, 17 2020	8.0 (1.0-26.0)		3.3	.7
Mokhele et al, ¹⁴ 2021	20.0 (5.7-43.7)		3.	.5
Loveday et al, ¹⁵ 2021 ^a	3.7 (1.0-9.1)		4.	.5
Subtotal: I ² = 38.1%; P = .15	6.0 (1.3-12.9)		20	0.0
Low birth weight				
Shin et al. ²² 2003	0.0 (0.0-41.0)		2.4	.4
Palacios et al, ²¹ 2009	7.9 (1.7-21.4)		4.0	.0
Tabarsi et al. ²⁰ 2011	0.0 (0.0-52.2)		2.0	.0
van der Walt et al, 17 2020	0.0 (0.0-13.7)		3.:	.7
Mokhele et al. ¹⁴ 2021	0.0 (0.0-16.8)		3.5	.5
Loveday et al. ¹⁵ 2021 ^a	30.3 (21.8-39.8)			.5
Subtotal: /2 = 85.6%: P <.001	3.9 (0.0-18.7)			0.0
Stillbirth	,			
Shin et al. ²² 2003	0.0 (0.0-41.0)		2.4	.4
Palacios et al. ²¹ 2009	2.6 (0.1-13.8)		4.0	.0
Tabarsi et al. ²⁰ 2011	0.0 (0.0-52.2)	· ·	2.0	.0
van der Walt et al. ¹⁷ 2020	4.0 (0.1-20.4)	4 N	3.	.7
Mokhele et al. ¹⁴ 2021	0.0 (0.0-16.8)	· ·	3.	5
Loveday et al. ¹⁵ 2021 ^a	5.5 (2.0-11.6)		- 41	5
Subtotal: $l^2 = 0.0\%$: $P = .92$	1.9 (0.1-5.1)		20	0.0
Neonatal death	(,			
Shin et al ²² 2003	0.0(0.0-41.0)			4
Palacios et al. ²¹ 2009	0.0 (0.0-9.3)	· ·	40	0
Tabarsi et al ²⁰ 2011	0.0 (0.0-52.2)			0
van der Walt et al. ¹⁷ 2020	0.0 (0.0-13.7)			.7
Mokhele et al 14 2021	5.0 (0.1-24.9)			5
Loveday et al 15 2021	0.0 (0.0-3.3)	· ·		5
Subtotal: /2=0.0%: P= 56	0.0(0.0-0.2)		20	0.0
Heterogeneity: $P = .003$ Overall effect: $I^2 = 80.8\% \cdot P < 0.01$	3.5 (0.6-7.8)		10	00.0

HPMZ for Pregnant Persons?

- Much disagreement about using moxifloxacin for DS-TB treatment
- No clear safety signals for H, P, M or Z in pregnant persons
- Evaluate its safety in a controlled setting with close follow up in a clinical trial setting

Maternal DS-TB Prevention

TB Apprise (P1078)

- Can IPT be safely initiated during pregnancy?
- Enrolled 956 HIV+ pregnant persons (14-34 weeks) in 8 high TB burden countries
- Randomized to initiate IPT during 2nd/3rd trimester vs postpartum

- No differences in maternal or live-born infant outcomes, TB incidence or death
- More adverse pregnancy outcomes in those who received IPT during pregnancy than the postpartum period

Composite Pregnancy Outcomes for Pregnant Persons with HIV with and without IPT

- Inconsistent associations between IPT and adverse pregnancy outcomes
- Weighing risk/benefit, systematic deferral of IPT during pregnancy was not recommended

WHO Recommendation for TPT in Pregnant Persons

WHO consolidated guidelines on tuberculosis

Module 1: Prevention Tuberculosis preventive treatment

> World Hea Organizati

- Adults and adolescents living with HIV who are unlikely to have active TB should receive TPT as part of a comprehensive package of HIV care.
- Treatment should be given to those on antiretroviral treatment, to pregnant women and to those who have previously been treated for TB, irrespective of the degree of immunosuppression and even if LTBI testing is unavailable.
- Strong recommendation, high certainty in the estimates of effect

First Trimester INH Exposure and Pregnancy Outcome in A5279 / BRIEF-TB

- First trimester INH exposure was associated with increased proportion of non-live births
- Counseling and contraception are needed for women of child-bearing age

INH Acetylation Status May Predict Adverse Pregnancy Outcomes

Methods:

- Exploratory analysis
- Logistic regression with multiple imputation
 - Outcome associated with missing PK data
- Predictors:
 - INH & EFV exposures
 - INH acetylation status (NAT2)
 - EFV metabolism status (CYP2B6)
- Adjust: maternal age, CD4, VL, ART, MUAC, IGRA, pregnancy complications, smoking, hospitalization
- Outcome: Composite APO

Conclusions:

- Fast INH acetylators more likely to experience composite APO or have a LBW infant than intermediate/slow acetylators
- Not driven by INH exposures, may be driven by INH metabolites (?)

IMPAACT 2001: PK & Safety of 3HP during Pregnancy

Methods

- 50 pregnant persons, 20 HIV+ on EFV
- 3HP initiated 2nd or 3rd trimester
- All with LTBI or recent contact

Conclusions

- No RPT dose adjustment needed
- Safe and tolerable, but not powered for safety
- Breastmilk and infant PK data pending

Parameter	HIV-positive	HIV-negative	% change vs. HIV-
Clearance, L/hr (RSE)	1.56 (7%)	1.20 (6%)	↑ 30%
AUC _{SS} , mg/L*hr (IQR)	522 (359-803)	786 (549-1171)	↓ 34%

DOLPHIN Moms Study Design

Phase IV RCT safety, tolerability of <u>1HP and 3HP</u> with PK of DTG in pregnant women (20-34weeks gestation) with HIV

- Design: 2 arm, randomized, multicenter, open-label study
- **Study population:** Pregnant women with virally suppressed HIV on existing DTGbased ART
- Primary outcome:
 - Composite targeted safety and tolerability

(maternal all-cause mortality, targeted SAEs, targeted pregnancy outcomes, permanent discontinuation 3HP or 1HP due to toxicity)

- Population PK parameters DTG with and without HP (k_a , V_D , CI/F, AUC₂₄ and C_t)
- Duration: 24 weeks postpartum (primary outcome at 12 weeks postpartum)

We hypothesize 1HP and 3HP will be similarly safe in pregnant women but will require DTG dose adjustment

24

Study led by Sylvia LaCourse (UW) and Jyoti Mathad (Cornell)

TB Preventive Treatment during Pregnancy

Pregnancy is not a contraindication for TPT Contraception should be offered to women of child-bearing age

Regimen	WHO assessed Safety	WHO/CDC Guidance	ART
6H	Safe for use* Some increased risk hepatoxicity	Preferred regimen B6 recommended while BF	No interaction
3RH	Safe for use ^{*#} Some increased risk hepatotoxicity Some increased risk bleeding	Recommended CDC: conditional	Interaction with DTG, PI, etc.
4R	May be safe, not safety/efficacy data available in this population [#] Some increased risk bleeding	Recommended CDC: conditional	Interaction with DTG, PI, etc.
3HP	Unknown	Not currently recommended	Interaction with DTG, need for dose adjustment unknown
1HP	Unknown	Not currently recommended	Interaction with DTG, need for dose adjustment unknown

*TB Apprise, use with caution. #Bleeding attributed to hypoprothrombinemia reported in infants and mothers following the use of rifampicin in late pregnancy. VitK recommended

Key Gaps in Maternal TB Treatment and Prevention

Treatment

- Can new shorter regimens be safely used for DS-TB and DR-TB in pregnancy and lactation?
 - BEAT-TB (BDLLC) Union late breaker
 - HPMZ, BPALM, etc.
- Does dosing need to be modified?
 - IMPAACT 2026 (DS-TB and DR-TB drugs, not Pa)

Prevention

- What is the optimal timing to initiate TPT during pregnancy?
- Are short course regimens safe to use during pregnancy? DOLPHIN Moms
- How should pregnant contacts of DR-TB patients be managed?

Optimized Approaches to Evaluate New Drugs and Regimens in Pregnancy

- Focused PK and safety studies on DS-TB and DR-TB drugs and regimens
- **2.** Early inclusion of children and women during second and third trimester and lactation in clinical trials
 - BEAT-TB
- **3. Reconsent** women when pregnancy occurs allowing for informed choice to remain on study drug/regimen
 - endTB
- **4. Pregnancy Registry** to improve our understanding of drug safety during pregnancy