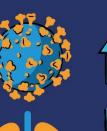


UNIVERSITY IYUNIVESITHI UNIVERSITEIT

Imperial College London


Outcome of a modelling study to evaluate the impact of COVID-19 on child TB notifications

Annual Meeting of the Child and Adolescent TB Working Group Tuesday 29 November 2022

James Seddon

Reader in Global Child Health, Imperial College London Consultant in Paediatric Infectious Diseases, St. Mary's Hospital Associate Professor, Stellenbosch University

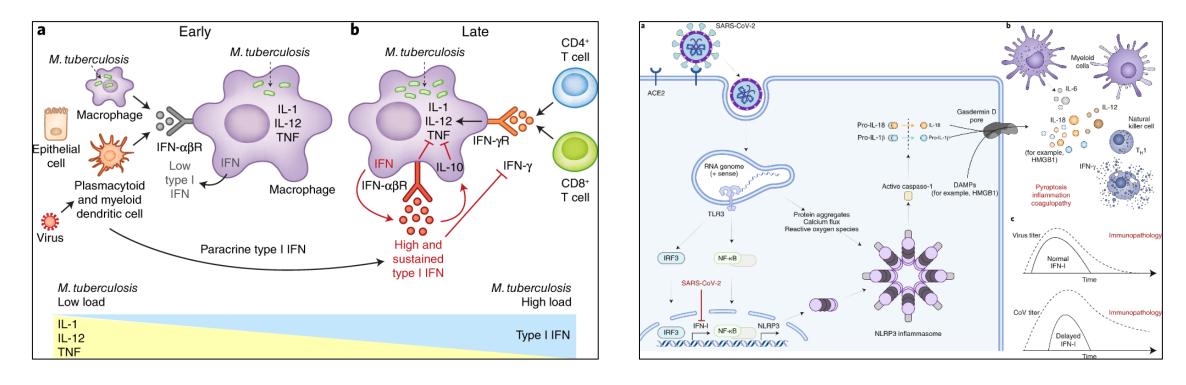
The COVID-19 pandemic has reversed years of progress made in the fight to end TB

In 2020

DEATHS INCREASED FOR THE FIRST TIME IN OVER A DECADE

FEWER PEOPLE WERE DIAGNOSED AND TREATED OR PROVIDED WITH TB PREVENTIVE TREATMENT

> WER RESOURCES FOR ESSENTIAL TB SERVICES AND TB R&D


Actions to mitigate and reverse the impact of the COVID-19 pandemic on access to essential TB services are urgently needed

INVEST TO END TB SAVE LIVES

World Health Organization

Overlap in immune responses Mtb & SARS-CoV-2

Singhania et al. Nat Immunol 2018; 19: 1159–1168

Brodin. Nat Med 2021; 27: 28–33

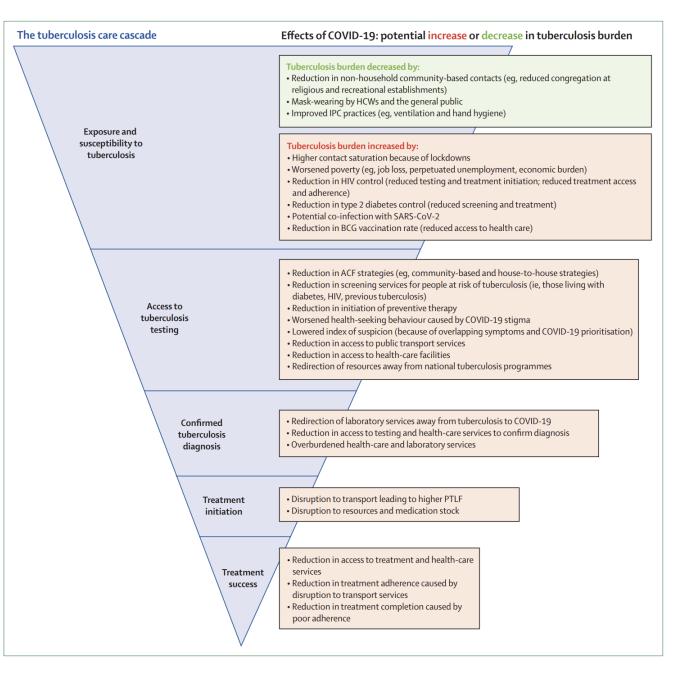
• CD4+ T cell responses, Innate regulation, Type I interferons

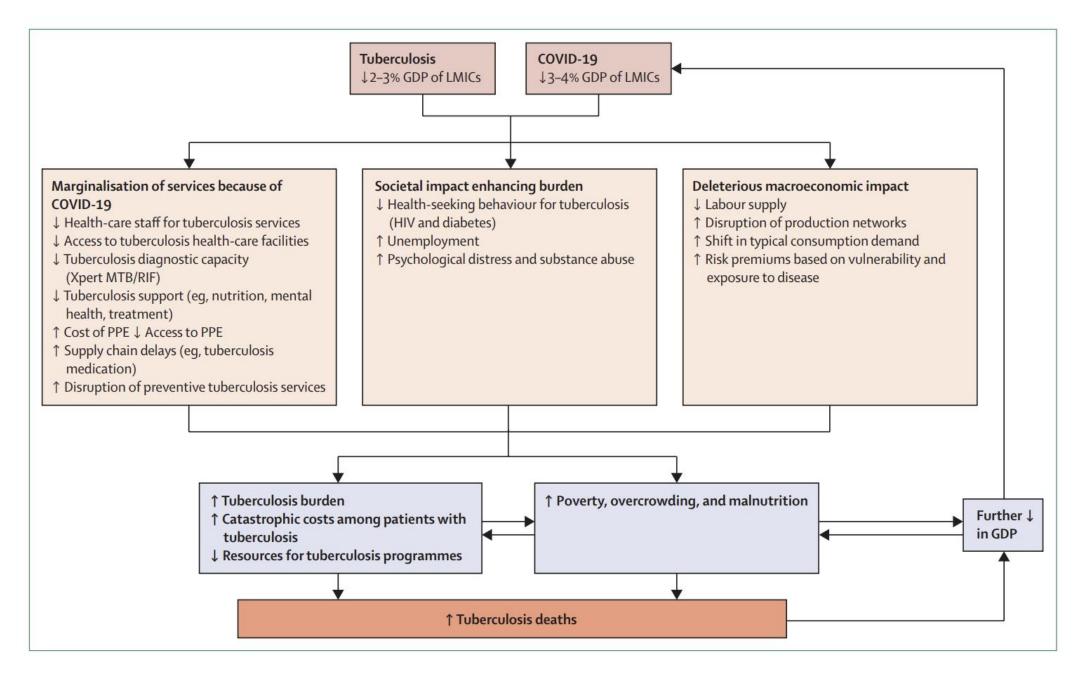
Coinfection of tuberculosis and COVID-19 limits the ability to in vitro respond to SARS-CoV-2

Linda Petrone^a, Elisa Petruccioli^a, Valentina Vanini^a, Gilda Cuzzi^a, Gina Gualano^b, Pietro Vittozzi^b, Emanuele Nicastri^c, Gaetano Maffongelli^c, Alba Grifoni^d, Alessandro Sette^d, Giuseppe Ippolito^e, Giovanni Battista Migliori^f, Fabrizio Palmieri^b Delia Goletti^{a,*}

Petrone et al. Int J Infect Dis. 2021; 113: S82-S87

Relationship of SARS-CoV-2–specific CD4 response to COVID-19 severity and impact of HIV-1 and tuberculosis coinfection


Catherine Riou,^{1,2} Elsa du Bruyn,^{1,3} Cari Stek,^{1,3,4} Remy Daroowala,^{1,3,4} Rene T. Goliath,¹ Fatima Abrahams,¹ Qonita Said-Hartley,⁵ Brian W. Allwood,⁶ Nei-Yuan Hsiao,^{2,7} Katalin A. Wilkinson,^{1,3,8} Cecilia S. Lindestam Arlehamn,⁹ Alessandro Sette,^{9,10} Sean Wasserman,^{1,3} Robert J. Wilkinson,^{1,3,4,8} and on behalf of the HIATUS consortium¹¹


Riou et al. J Clin Invest. 2021; 131: e149125

- T cells in SARS-CoV-2- *Mtb* co-infection showed poor polyfunctional potential, reduced proliferation capacity, and enhanced HLA-DR expression
- HIV/TB co-infection sub-optimal T and B cell responses
- COVID-19 patients reduced frequency of *Mtb* specific CD4+ T cells implications for TB disease progression

The intersecting pandemics of tuberculosis and COVID-19: population-level and patient-level impact, clinical presentation, and corrective interventions

Keertan Dheda*, Tahlia Perumal*, Harry Moultrie, Rubeshan Perumal, Aliasgar Esmail, Alex J Scott, Zarir Udwadia, Kwok Chiu Chang, Jonathan Peter, Anil Pooran, Arne von Delft, Dalene von Delft, Neil Martinson, Marian Loveday, Salome Charalambous, Elizabeth Kachingwe, Waasila Jassat, Cheryl Cohen, Stefano Tempia, Kevin Fennelly, Madhukar Pai

Dheda et al. Lancet Resp Med 2022; 10: 603-22

Paediatric specific impacts

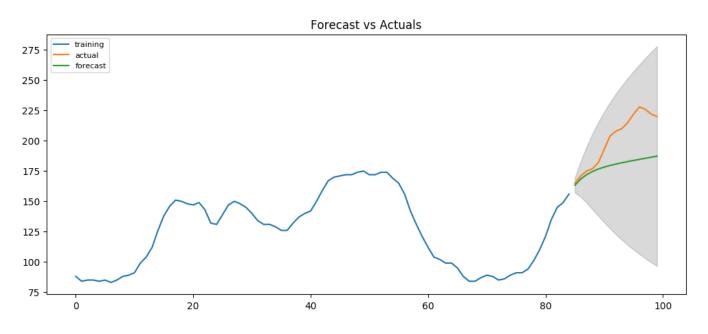
- Biological impact of SARS-CoV-2 on *Mtb* pathogenesis may be even more pronounced in children given different immune response to adults
- Delayed adult PTB presentations lead to prolonged household exposure particularly an issue in young children
- Staff from TB clinics re-deployed
- Equipment (GeneXpert platforms) re-deployed for COVID-19
- Staff frequently off (with COVID-19 or following COVID-19 exposure)
- Government responses restricted access to child TB services (social and travel restrictions, financial implications of loss of work)
- Many children with TB not evaluated properly or misdiagnosed with COVID-19
- Caregiver anxiety about accessing health care facilities concern re exposure to COVID-19
- Economic impact of COVID-19 poverty

What has been the impact of COVID-19 on child TB?

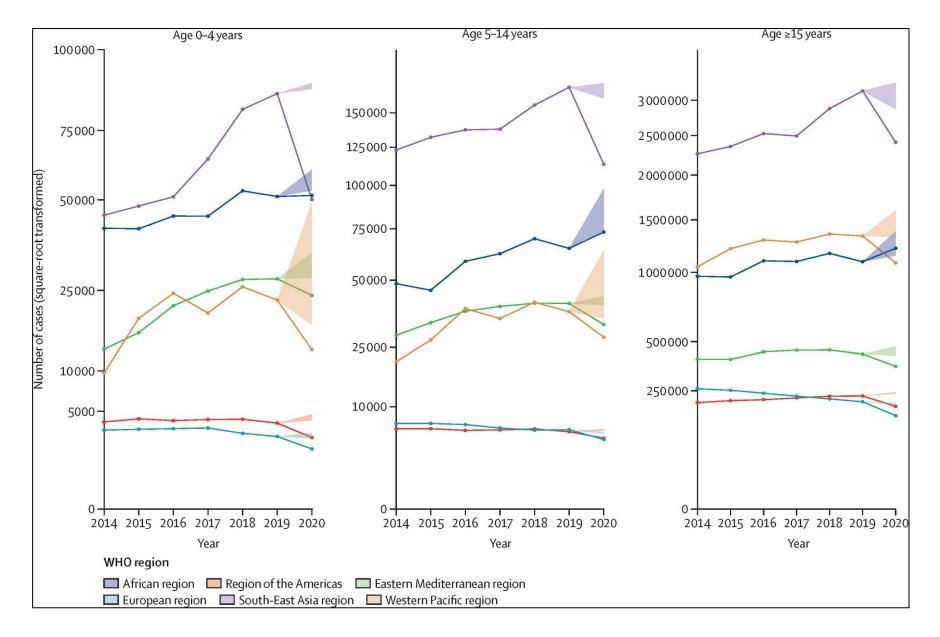
Data sources

- Annual case notification data reported to WHO by 215 countries were used
- New and relapse case notification counts were extracted by country, sex, and age group from 2014 to 2020
- Three age groups were used: 0–4 years, 5–14 years, and 15 years or older
- Data from all 215 reporting countries were used to estimate annual WHO regional and global notification counts

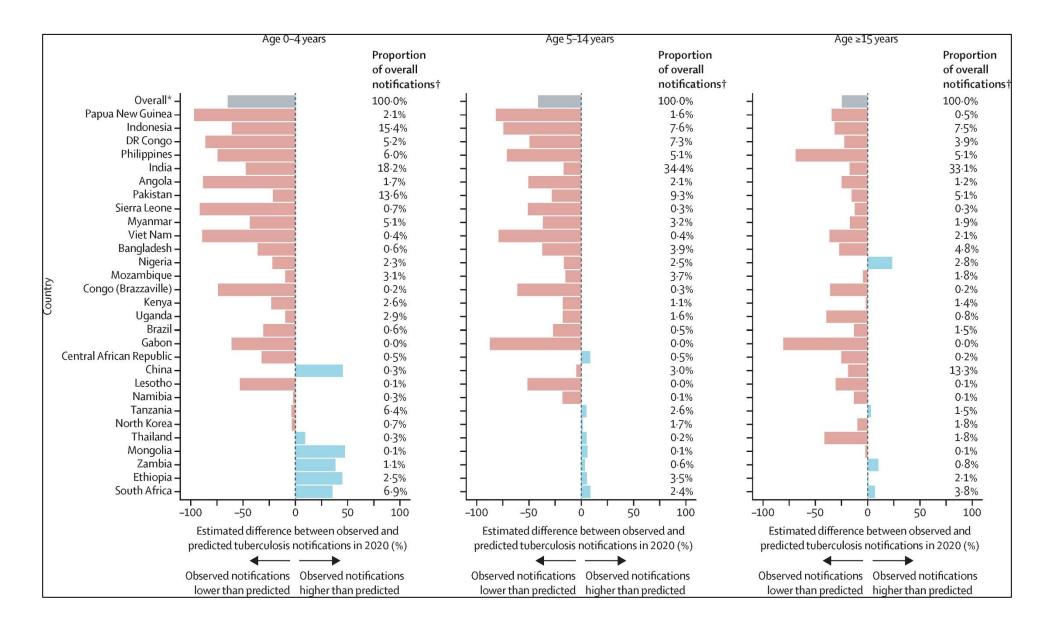
Global trends in notifications


	Age 0–4 years				Age 5–14 years				Age ≥15 years				
	Male	Female	Difference	M:F ratio	Male	Female	Difference	M:F ratio	Male	Female	Difference	M:F ratio	
2014	63 706	52 273	11 433	1.219	113 040	120 846	-7806	0.935	3 255 905	1 859 085	1 396 820	1.751	
2015	73 319	57 900	15 419	1.266	121 347	129 457	-8110	0.937	3 426 488	1 939 862	1 486 626	1.766	
2016	82 590	65 916	16 674	1.253	137 812	146 025	-8213	0.944	3 693 715	2 094 826	1 598 889	1.763	
2017	89 789	70 895	18 894	1.267	141 237	144 385	-3148	0.978	3 641 494	2 094 775	1 546 719	1.738	
2018	109 305	86 792	22 513	1.259	156 977	161 444	-4467	0.972	3 930 278	2 330 710	1 599 568	599 568 1.686	
2019	110 224	87 302	22 922	1.263	158 996	164 479	-5483	0.967	3 998 138	2 393 191	1 604 947	1.671	
2020	79 151	63 374	15 777	1.249	123 317	133 081	-9764	0.927	3 349 079	2 042 674	1 306 405	1.640	

Gender differences



Time series modelling


- Autoregressive integrated moving average (ARIMA) time-series modelling was used to predict 2020 case notifications on the basis of data from 2014 to 2019
- We used data from 2014 to 2018, stratified by sex, age group, and location, to develop 216 independent time series for training
- We fitted ARIMA models to these training time series, and the best ten were taken forward for assessment of predictive accuracy
- The predictive accuracy of these models was evaluated by comparing the total absolute difference between their predicted 2019 values and the observed 2019 values

Time series modelling

Differences between predicted and observed notifications for 30 HBCs

Global impact of COVID-19 on childhood tuberculosis: an analysis of notification data

Lasith Ranasinghe*, Jay Achar*, Matthias Gröschel, Elizabeth Whittaker, Peter J Dodd, James A Seddon

	Observed notifications	Predicted notifications	Difference, observed vs predicted					
			n	%				
Age 0-4 years								
Male	79151	122 371 (110 665 to 134 076)	-43 220 (-31 514 to -54 925)	-35·3% (-28·5 to -41)				
Female	63374	98 423 (87 101 to 109 744)	-35049 (-23727 to -46370)	-35·6% (-27·2 to -42·3)				
All	142 525	220794 (204509 to 237078)	-78269 (-61984 to -94553)	-35·4% (-30·3 to -39·9)				
Age 5–14 years								
Male	123317	178 403 (163 963 to 192 842)	-55 086 (-40 646 to -69 525)	-30.9% (-24.8 to -36.1)				
Female	133 081	176 175 (162 548 to 189 801)	-43 094 (-29 467 to -56 720)	-24·5% (-18·1 to -29·9)				
All	256398	354 578 (334 724 to 374 431)	-98 180 (-78 326 to -118 033)	-27·7% (-23·4 to -31·5)				
Age ≥15 years								
Male	3349079	4 119 747 (3 906 774 to 4 332 719)	-770 668 (-557 695 to -983 640)	-18·7% (-14·3 to -22·7)				
Female	2 0 4 2 6 7 4	2 519 800 (2 363 013 to 2 676 586)	-477 126 (-320 339 to -633 912)	–18·9% (–13·6 to –23·7)				
All	5391753	6 639 547 (6 375 086 to 6 904 007)	-1247794 (-983333 to -1512254)	-18·8% (-15·4 to -21·9)				
Data are n, n (95%	PI), or % (95% PI). PI=predict	ion interval.						

Table 2: Global time-series predictions for 2020 generated using data from 2014–19 compared with observed notifications for 2020, by sex and age

Global impact of COVID-19 on childhood tuberculosis: an analysis of notification data

Lasith Ranasinghe*, Jay Achar*, Matthias Gröschel, Elizabeth Whittaker, Peter J Dodd, James A Seddon

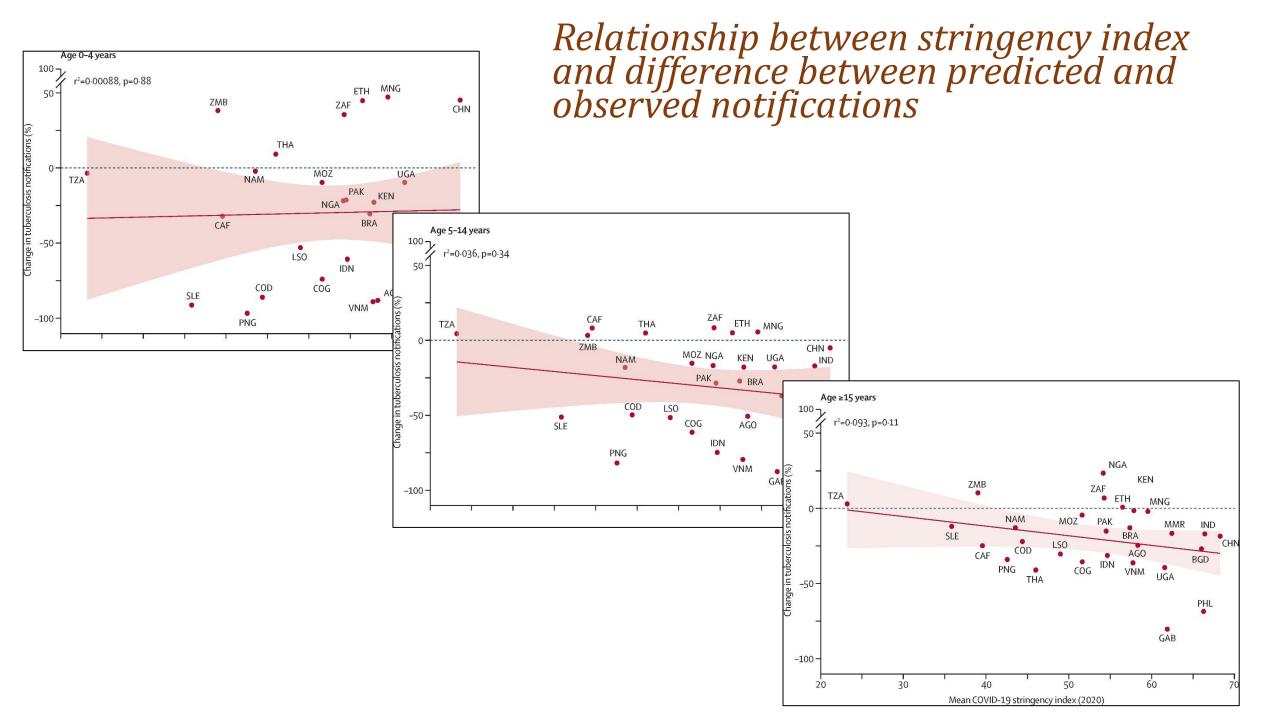
	Observed notifications	Predicted notifications	Difference, observed vs predicted						
			n	%					
Age 0-4 years									
Male	79151	122 371 (110 665 to 134 076)	-43 220 (-31 514 to -54 925)	-35·3% (-28·5 to -41)					
Female	63374	98 423 (87 101 to 109 744)	-35 049 (-23 727 to -46 370)	-35.6% (-27.2 to -42.3)					
All	142 525	220794 (204509 to 237078)	-78 269 (-61 984 to -94 553)	-35·4% (-30·3 to -39·9)					
Age 5–14 years									
Male	123317	178 403 (163 963 to 192 842)	-55 086 (-40 646 to -69 525)	-30·9% (-24·8 to -36·1)					
Female	133 081	176 175 (162 548 to 189 801)	-43 094 (-29 467 to -56 720)	-24- 5% (-18·1 to -29·9)					
All	256398	354 578 (334 724 to 374 431)	-98 180 (-78 326 to -118 033)	-27·7% (-23·4 to -31·5)					
Age ≥15 years									
Male	3349079	4 119 747 (3 906 774 to 4 332 719)	-770 668 (-557 695 to -983 640)	–18·7% (–14·3 to –22·7)					
Female	2 0 4 2 6 7 4	2 519 800 (2 363 013 to 2 676 586)	-477 126 (-320 339 to -633 912)	–18·9% (–13·6 to –23·7)					
All	5391753	6 639 547 (6 375 086 to 6 904 007)	-1247794 (-983333 to -1512254)	–18·8% (–15·4 to –21·9)					
Data are n, n (95%	Pl), or % (95% Pl). Pl=predict	ion interval.							

Table 2: Global time-series predictions for 2020 generated using data from 2014–19 compared with observed notifications for 2020, by sex and age

https://doi.org/10.1038/s41562-021-0107

RESOURC

Check for update


A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker)

Thomas Hale¹², Noam Angrist², Rafael Goldszmidt², Beatriz Kira¹, Anna Petherick¹, Toby Phillips¹, Samuel Webster³, Emily Cameron-Blake¹, Laura Hallas¹, Saptarshi Majumdar¹ and Helen Tatlow¹

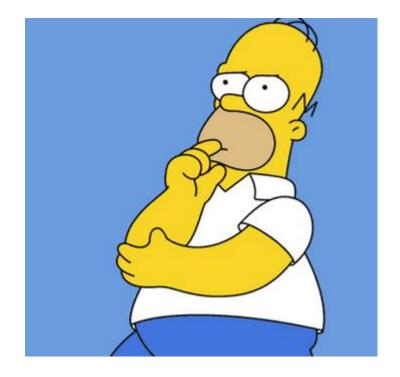
ID	Name	Туре	Targeted/ general?		GRI	СНІ	Stringency index	ESI	Legacy stringency	Maximum value (<i>N_j</i>)	F ()
Conta	inment and closure								index		
C1	School closing	Ordinal	Geographic	k	13	11	9	2	7		
C2	Workplace closing	Ordinal	Geographic	C1	x	х	х		х	3 (0, 1, 2, 3)	
C3	Cancel public events	Ordinal	Geographic	C2	x	х	x		х	3 (0, 1, 2, 3)	
C4	Restrictions on gathering size	Ordinal	Geographic	C3	х	х	х		х	2 (0, 1, 2)	Ye
C5	Close public transport	Ordinal	Geographic	C4	x	x	х			4 (0, 1, 2, 3, 4)	Ye
C6	Stay-at-home requirements	Ordinal	Geographic	C5						3, 4) 2 (0, 1, 2)	Ye
C7	Restrictions on internal movement	Ordinal	Geographic	C6	x x	x	×		x	3 (0, 1, 2, 3)	Ye
C8	Restrictions on international travel	Ordinal	No	C8		x	×				Ye
Econo	mic response				X	х	x		x	2 (0, 1, 2)	
E1	Income support	Ordinal	Sectoral	C8	x	х	x		x	4 (0, 1, 2, 3, 4)	No
E2	Debt/contract relief for households	Ordinal	No	E1	x			x		2 (0, 1, 2)	Ye
E3	Fiscal measures	Numerical	No	E2	x			x		2 (0, 1, 2)	No
E4	Giving international support	Numerical	No	E3							
Healt	n systems			E4							
H1	Public information campaign	Ordinal	Geographic	H1	x	x	x		x	2 (0, 1, 2)	Ye
H2	Testing policy	Ordinal	No	H2	x	x				3 (0, 1, 2, 3)	No
H3	Contact tracing	Ordinal	No	нз	x	x				2 (0, 1, 2)	No
H4	Emergency investment in health	Numerical	No	Н4							
	care			H5							
H5	Investment in COVID-19 vaccines	Numerical	No	H6	x	x				4 (0, 1, 2,	Ye
H6	Facial coverings	Ordinal	Geographic							3, 4)	
···· ·································		Ordinal	Funding	H7	х	x				5 (0, 1, 2, 3,	Ye
Misce	llaneous									4, 5)	
M1	Other responses	Text	No	M1							

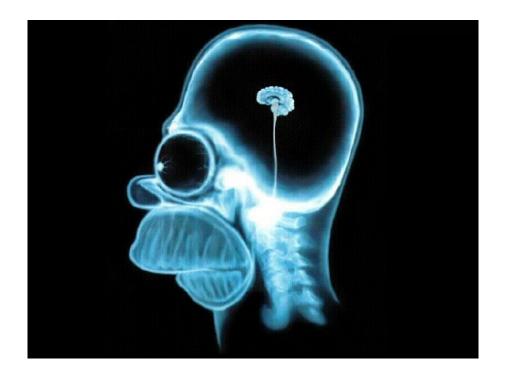
Stringency Index

We used linear regression to examine whether there was a correlation between estimated percentage reductions in tuberculosis notifications in 2020 and magnitude of governmentimposed restrictions on mixing to mitigate COVID-19, quantified as the mean of a COVID-19 stringency index for 2020 for the 30 highburden countries

Summary

- COVID-19 and TB share many similarities
- Gender differences are seen in all ages that require further examination and targeted approaches
- The pandemic has had a negative impact on TB notifications globally, worst in children
- A concerted effort to address this is required





Questions?

