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The global health community has set itself the task of eliminating tuberculosis

(TB) as a public health problem by 2050. Although progress has been made in

global TB control, the current decline in incidence of 2% yr21 is far from the

rate needed to achieve this. If we are to succeed in this endeavour, new strat-

egies to reduce the reservoir of latently infected persons (from which new cases

arise) would be advantageous. However, ascertainment of the extent and risk

posed by this group is poor. The current diagnostics tests (tuberculin skin test

and interferon-gamma release assays) poorly predict who will develop active

disease and the therapeutic options available are not optimal for the scale of

the intervention that may be required. In this article, we outline a basis for

our current understanding of latent TB and highlight areas where innovation

leading to development of novel diagnostic tests, drug regimens and vaccines

may assist progress. We argue that the pool of individuals at high risk of pro-

gression may be significantly smaller than the 2.33 billion thought to be

immune sensitized by Mycobacterium tuberculosis and that identifying and

targeting this group will be an important strategy in the road to elimination.
1. Introduction
Mycobacterium tuberculosis (Mtb) is a pathogen that has coevolved with anatomi-

cally modern humans [1–3], co-migrating from Africa as our population

expanded to cover every area of the globe (see box 1). It has been estimated

that in 2006 there were more cases of tuberculosis (TB) than in any other year in

recent history [7], and yet the ambitious vision adopted by the World Health

Organization (WHO) and Stop TB partnership is to eliminate TB as a public

health problem by 2050 [8]. This has been defined as achieving an incidence

rate of less than 1 case per million of the global population; for comparison, the

2012 rate is 1220 cases per million [9]. Various regions of the world are in different

phases of the TB epidemic and will require different strategies to make progress

towards elimination. In the twentieth century, much of Western Europe, North

America and parts of East Asia saw dramatic reductions in TB incidence through

major social and economic progress and implementation of improved TB control

and treatment programmes, with reduction in TB cases of up to 8.8% yr21 being

achieved after the second world war [10]. By contrast, sub-Saharan Africa and

Eastern Europe/Central Asia in particular suffered a steep increase in inci-

dence during the 1990s owing to the HIV epidemic and the social and

economic disruption following collapse of the Soviet Union, respectively.
(a) Targeting tuberculosis
Progress recently has certainly been made in global TB control aided by a number

of internationally agreed targets over the last two decades. In the 1990s, as part of

the WHO DOTS strategy, a commitment to identify 70% and cure 85% of TB cases

by 2005 was made, and this was largely achieved in many parts of the world [11].

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2013.0437&domain=pdf&date_stamp=2014-05-12
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Box 1. Origins and evolution of latency in tuberculosis.

Current evidence suggests that Mtb was already established as an infection of ancient human populations prior to migration out

of Africa. In these small isolated hunter–gatherer populations, sustained infection would be favoured by low-virulence patho-

gens capable of persisting within the human host by chronic or latent infection and transmitting to susceptible new birth cohorts

years or decades after initial infection. Higher virulence pathogens with shorter incubation would result in self-terminating epi-

demics owing to elimination of susceptible hosts [2,4]. It has been speculated that increases in human population density

associated with the Neolithic Revolution in farming and the Industrial Revolution in Europe may have favoured the emergence

of Mtb strains with greater virulence and shorter incubation periods [1,3,5]. According to this model, carriage as an asympto-

matic commensal may have been the predominant mode of Mtb infection in ancient human populations and may have shaped

the natural immune response. The current predominant high mortality form of TB would then represent a relatively recent chal-

lenge to human health. This model is consistent with phylogenetic analysis of global Mtb and with epidemiological differences

between the spread of ‘modern’ Beijing strains and that of ‘ancient’ Mycobacterium africanum [6].
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Subsequently, as part of the response to the United Nations Mil-

lennium Development Goal 6 to combat HIV/AIDS, malaria

and other major diseases, the Stop TB partnership set a target

of reducing the global mortality and prevalence of TB disease

by 50% compared with 1990 levels. By 2012, a 37% reduction

in global prevalence of TB had been achieved (although not

on track to achieve 50% reduction by 2015) and a 45% reduction

in mortality (on track to achieve 50% reduction by 2015) [12].

Latest estimates suggest that in 2012 there were 8.6 million

new cases of TB and 1.3 million deaths, with the global inci-

dence of TB falling 2% yr21 over recent years [9]. In this

context, the 2050 elimination target seems particularly bold,

requiring a historically unprecedented 20% yr21 reduction in

global incidence [10]. A detailed strategy to make the 2050

vision a reality is currently being developed and will be

announced in 2014 with interim targets for 2025 and 2035

being proposed. In the initial phase, scale-up and widespread

implementation of current TB control measures coupled with

continued socioeconomic development particularly within the

BRICS (Brazil, Russia, India, China and South Africa) countries

along with continued antiretroviral therapy (ART) roll out in

sub-Saharan Africa could result in reductions in TB incidence

of 10% yr21. However, to bring global incidence down towards

current levels seen in North America and parts of Western

Europe, considered to be in the elimination phase (less than

100 cases/million yr21), by 2035 will require development of

novel technologies and approaches though research and inno-

vation. Whereas until now TB control has focused on

detection and management of active disease, which will con-

tinue to be important, a renewed focus on understanding and

managing the important reservoir of infected humans with

latent infection will be critical to future progress. Modelling

suggests that mass treatment of latent TB would be one of

the most effective ways to reduce incidence of TB [10,13], but

with current treatment and diagnostics this would involve up

to one-third of the world’s population taking three to nine

months of anti-tuberculous therapy, which is neither desirable

or feasible. In this article, we will highlight our current under-

standing of latent TB and the gaps in our knowledge that need

to be filled to develop more predictive diagnostic tests, effective

short-course treatments and vaccines.
2. Diagnosing latent infection

Latent tuberculosis may be defined for convenience as that which
is unaccompanied by symptoms and physical signs, causes no
obvious disturbance and is not recognised by the physician.
There is no sharp distinction between latent and manifest tuber-
culosis, and in some instances latent tuberculosis is more
extensive than that which is recognisable. Ability to distinguish
between latent and manifest disease will vary with the means
available for diagnosis. (Opie & McPhedran 1926 [14, p. 347])
Opie & McPhedran’s [14] characterization of latent TB remains

accurate and insightful 88 years after writing, and it is striking

that the means physicians have available to distinguish

active and latent TB remain essentially unchanged today.

Chest X-ray, tuberculin skin testing and sputum investigation

for evidence of Mtb remain the cornerstones of diagnosis. Inter-

feron-gamma release assays developed over the last decade

represent an evolution in diagnosis of latent TB rather than a

conceptual shift as they also indicate immune sensitization.

Advanced imaging such as computed tomography (CT) and

combined positron emission tomography/computed tomo-

graphy (PET/CT) used to identify minimal disease and

invasive sampling also now play a role in specialist centres in

high-income countries in selected cases. The diagnostic path-

way nevertheless still ends in a binary classification with

those considered latently infected being potentially eligi-

ble for preventive therapy and those with active disease,

standardized treatment.

(a) The development of the tuberculin skin test
By the end of the nineteenth century, the notion that a latent

period of infection could occur in TB was widely accepted. Sev-

eral autopsy case series carried out around the turn of the

century demonstrated that Mtb was frequently present in per-

sons who died of causes other than TB by inoculating material

into rabbits or guinea pigs, where secondary infection was

observed [15,16]. Detecting the presence of infection in asymp-

tomatic living people was more challenging. Koch’s discovery

and development of tuberculin, a heat-killed culture filtrate of

TB that was proposed unsuccessfully as a cure in 1890, pro-

vided a useful diagnostic test, unmasking occult infection by

inducing systemic reaction following subcutaneous injection

[17]. Over a period of 60 years, this was refined into an intrader-

mal skin test using a standardized purified protein derivative

of tuberculin (PPD) and measuring the induration formed

after 48–72 h. The result, expressed as millimetres (mm) of

induration, is a continuous variable where the threshold for a

positive result can be varied to modify diagnostic sensitivity

and specificity. The dose of PPD was optimized to maximize

sensitivity in distinguishing healthy close contacts of TB from

healthy non-contacts, and the tuberculin skin test (TST) remains
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widely used globally today and is generally considered to

demonstrate the presence of infection [18].

But to what extent can this relationship be assumed to be

true in the obvious absence of autopsy studies to relate premor-

bid TST to post-mortem identification of viable bacilli? The

guinea pig ‘natural infection’ model, initially developed by

Riley to investigated airborne transmission in which air from

side rooms or wards where TB-infected patients are resident

is vented over chambers housing guinea pigs, can provide

some evidence. In these studies, the distribution and magni-

tude of TST reactions found in guinea pigs was similar to

humans; at autopsy, evidence of infection was found in 0% of

guinea pigs with tuberculin reactions of 0–5 mm (negative

reaction), 92% of guinea pigs with TST of 14 mm or more or

evidence of necrosis, but only 25% with TST of 6–13 mm [19].

This finding, that not all ‘naturally infected’ guinea pigs with

positive TST have evidence of infection at autopsy, was sub-

sequently confirmed by others [20,21]. Equally, if positive TST

indicated presence of infection and negative TST absence of

infection, then treatment of latent infection might be expected

to cause a reversion of status. In the United States Public

Health Service Trials 13 176 household contacts who were

initially tuberculin reactors had TST repeated at 12 months;

6.5% of contacts who received placebo converted to negative

and 7.9% of isoniazid treated subjects converted to negative.

However, isoniazid reduced the 10-year incidence of TB by

59% in those that remained TST positive at 12 months and by

38% in those that converted at 12 months, indicating that isonia-

zid’s efficacy to prevent disease was not associated with a

capacity to induce TST reversion [22]. From this, we conclude

that TST provides evidence of immune sensitization by Mtb

and is a correlate of TB infection but usually remains positive

even if infection is treated.

Because TST can register low-level false positive results due

to sensitization by environmental bacteria and BCG, interferon

(IFN)-gamma release assays (IGRAs) were developed to

improve specificity of the diagnosis. While these tests provide

a reasonably good measure of TB exposure and their negative

predictive values are very high (IGRA 99.7%, TST 99.4%),

they are, like TST, poorly predictive of progression to active dis-

ease (positive predictive value: IGRA 2.7%, TST 1.5%) [23,24].

As a result, when these immunodiagnostic tests are used

as a guide for administration of preventive therapy, the

number needed to treat (NNT) to prevent one case of active

TB is high. In a systematic review of 11 studies involving

73 375 HIV-uninfected participants where presence of infec-

tion was mainly determined by TST and participants were

randomized to isoniazid or placebo, the pooled NNT was

100, ranging from 36 in recently infected household contacts

and up to 179 in those remotely infected [25]. After the initial

need to develop sensitive and then specific tests for latent TB,

we now need to develop tests that are better able to predict

who will develop active TB.
3. Estimating the global burden of latent
tuberculosis

Defining the prevalence of infection at a global and a regional

level is critical to understanding the potential size of the

reservoir of infection and planning intervention strategies.

One of the most widely quoted statistics is that one-third of

the world’s population is infected by Mtb, emphasizing the
huge scale of the problem [26]. However, no test actually

demonstrates the presence of infection and it is useful to con-

sider the data upon which the statement is made. Prevalence

of infection in a population is not directly estimated from popu-

lation-wide tuberculin surveys but derived from the annual

rate of infection (ARI), which can be either directly determined

from focused tuberculin surveys (usually in school children) or

indirectly estimated from incidence of active TB (itself usually

estimated from case notification, disease prevalence or mor-

tality data), using the equation ARI ¼ incidence/coefficient,

as risk of infection is determined by contact with infectious

cases [27]. In addition, the change in ARI over time should

be known in order to accurately determine prevalence of

infection throughout the population.

In 1999, WHO convened a consensus group comprising 86

experts and epidemiologists who evaluated the best available

data for all countries up to 1997 for a number of TB indicators

including prevalence of infection [26]. Recent good quality

tuberculin surveys were available for only 24 countries and

the rate of change in ARI was only accurately known in a min-

ority. For the majority of countries for which good quality

tuberculin surveys were not available (or it was not possible

to confidently extrapolate from countries with good data),

ARI was derived from the incidence of smear positive disease

using the equation above with the coefficient of 50 (for countries

where HIV prevalence in TB cases was less than 5%) coming

from ‘Styblo’s rule’ [28] (which states that a smear positive pul-

monary TB incidence of 50/100 000 yr21 corresponds to ARI of

1%, potentially an overestimate—vide infra). The authors esti-

mated that 32% of the world’s population was infected with

Mtb but acknowledged the lack of good data and limitations

of the models to determine prevalence of infection and did

not provide an uncertainty estimate.

Tuberculin surveys, while widely performed and a poten-

tially cost effective way to monitor changes in the burden of

infection, have several limitations. Aside from the inherent issue

of observer variability, interpreting results to determine the pro-

portion that are immune sensitized by Mtb is challenging as the

specificity of the test varies between populations depending

upon exposure to environmental mycobacteria and BCG vacci-

nation. Analysing the distribution of TST reactions using

mixture models and other techniques to identify bimodal pat-

terns (as the reaction to TST is greater following immune

sensitization by Mtb than environmental mycobacteria or BCG)

can be performed but not all distributions lend themselves to

this form of analysis [29,30]. Systematic surveys using IGRA

have not often been performed and the need for venepuncture,

specialist laboratories and cost may limit widespread use. In

addition, the dynamics of IGRA conversion and reversion over

time and hence sensitivity to detect remote infection are less

well understood, although data from IGRA surveys could be

used with tuberculin surveys to refine estimates of latent TB

infection (LTBI) prevalence [31]. A recombinant ESAT-6/

CFP-10 skin test is currently in development with early clinical

studies showing superior specificity to TST and correlation

with whole blood Quantiferon results [32]; such a test may

ultimately prove particularly useful for surveys of this kind.

Modelling the risk of infection from the incidence of smear

positive active disease seems appropriate but ‘Styblo’s rule’

makes some key assumptions informed by six studies between

1921 and 1971: each smear positive incident case is infectious for

2 years (corresponding to two prevalent cases), and each preva-

lent case results in 10 new infections per year. Hence the rule, an
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Figure 1. Reservoir of TB—we currently have estimates for proportion of population that are immune sensitized (large circle) and number of cases of active TB annually
(small filled circle). As TST and IGRA reversion can occur, total number of exposed persons may be greater than this (larger dashed circle), in addition TST and IGRA are
only moderately sensitive for active TB. A much smaller pool of people may be at much higher risk of TB (bottom small dashed circle) and also a proportion of people
may receive considerable protection against reinfection (top small dashed circle). Identifying these additional populations may be very valuable. (Online version in colour.)
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incidence of 50/100 000 yr21 results in an infection rate of 1000/

100 000 yr21. This may be less applicable in the contemporary

era as improved diagnosis and treatment may have reduced

the average duration of infectiousness significantly and factors

such as population density, success of TB control programmes,

the prevalence of HIV infection and the prevalence of drug-

resistant TB will also have influenced transmission [33]. A

recent analysis of data from East Asian countries between

1975 and 1994 by van Leth et al. [34] determined that the

number of infections per prevalent smear positive case was

2.6–5.9 yr21, so at least in some parts of the world ‘Styblo’s

rule’ overestimates infection [33,34]. Smear positive TB is also

not homogeneous. Jones-Lopez et al. [35] have shown that in

only 45% of smear positive cases could Mtb be cultured from

cough aerosols generated through 10 min of strong coughing.

In addition, the variability in colony-forming units (cfu) gener-

ated was great (1–378 cfu). They also showed that infection of

household contacts was significantly greater when the index

cases had a high cough aerosol cfu compared with low or no

cough aerosol cfu [35]. Confirming that cases of TB transmit vari-

ably, Escombe et al. [36] using the Riley guinea pig model of

airborne infection in an HIV/TB ward in Peru showed that

8.5% of admissions were responsible for 98% of infections in

guinea pigs. Further complicating the situation is the fact that

although previously Mtb was considered a highly invariant

pathogen, recent large-scale whole genome sequencing projects

have made it clear that the pathogen has continued to evolve.

As human population density has expanded exponentially and

living conditions have shifted from low-density agrarian con-

ditions to high-density urban conditions, new genetic variants

of Mtb have emerged, displacing formerly resident strains [37]

(see box 1). More ‘modern’ strains differ from their ancient pro-

genitors, notably at a cellular level in the magnitude of the

innate immune response they elicit [38]. More variation in

these strains has been observed than previously expected, and

plausible links to enhanced transmissibility have been inferred
from cluster size in human populations exposed to multiple

strain clades [39]. Comparison of experimental infection outcome

in non-human primates with modern and ancient strains reveals

strikingly different outcomes of infection among currently preva-

lent clades [40]. The contribution of strain variability to

differences in transmissibility is likely to be geography and popu-

lation-density specific, and employing any general rule to

establish prevalence of infection base on reported cases is likely

to be extremely inaccurate.

Accurate estimation of the proportion of the world that

is infected using the currently available tools is extremely diffi-

cult. Better data and a better understanding of how parameters

change regionally or in certain situations (such as drug resist-

ance) may allow for the development of more sophisticated

models [41] that will allow more accurate assessment of the

prevalence of infection and estimates of useful subgroups

such as the prevalence of drug-resistant LTBI or the proportion

of LTBI related to a recent infection. However, ultimately what

we want to know is the proportion that is highly likely to

develop active disease (figure 1).
4. The natural history of tuberculosis
The natural history of TB is more complex than most bacterial

pathogens. The incubation period is prolonged and the out-

come of infection variable depending upon both host and

pathogen. Much of our current understanding still arises

from piecing together historical studies and evidence from

animal models that often fail to replicate key aspects of

human disease. However, understanding this natural history

of infection is critical to accurate categorization of TB-infected

persons, identification of correlates of risk and protection,

and development of novel interventions.

Although TB can develop in virtually any part of the

body, disease involving the lungs (which occurs in 60–75%
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of cases) is necessary for transmission of infection, in particu-

lar pulmonary cavitation facilitates efficient Mtb replication

and transmission. There is some evidence that suggests Mtb

may specifically exploit the immune response through con-

servation of immunodominant epitopes [42], which could

promote the induction of immunopathology that leads to

lung cavitation. It is immunocompetent adults that contribute

most to disease transmission. These individuals who are most

effective at transmitting are often sputum smear positive and

cough spontaneously, thereby generating infectious particles.

Infection is initiated by droplet nuclei of less than 5 mm that

can remain suspended in the air for hours (if not disrupted by

turbulence) and be inhaled by contacts sharing the same

environment [43]. Around 30–50% of close household con-

tacts will develop evidence of immune sensitization as a

result of infection [44].

A single droplet nucleus (probably containing 1–10 bacilli)

can initiate infection, with the site of implantation following

chance distribution strongly influenced by the particle size

across the lung lobes [45]. The early stages of infection are

characterized by a localized macrophage-rich alveolitis, lym-

phatic spread to regional mediastinal lymph nodes and a

low-grade bacillaemia allowing distant dissemination [46,47].

Approximately 2–10 weeks following initial infection, a cell-

mediated immune response develops, signified by tuberculin

conversion, facilitating the development of granulomas

which promote control of infection [48] (box 2). This initial

infection is often asymptomatic but may be associated with

fever, mild chest symptoms and increased inflammatory mar-

kers [52,53]. The primary infiltrate may be visible on chest

radiograph in 2–6% of older children and adults [54] (this

may be considerably higher in young children [55,56]). In a

small proportion (less than 15%), the visible primary infiltrate

may progress (progressive primary TB), but in general the

lesion heals and often eventually calcifies. If progressive TB

disease subsequently develops within the lungs, it does so at

a distant site, most commonly arising apically or sub-apically;

the mechanism for this characteristic localization is poorly

understood and the source of some speculation [57–59].
(a) Lifetime risk of infection progressing to disease
The lifetime age-weighted risk of TB following infection in set-

tings with low exogenous reinfection is estimated to be 12%

[60]. Careful follow-up in placebo-controlled intervention

studies has demonstrated that disease is most likely to occur

in the first year following infection, with stepwise reduction

year on year over the following 5–10 years (figure 2), by

which time incidence approaches that of uninfected contacts

[22]. The different manifestations of TB occur at different inter-

vals following infection, with pleural TB, TB meningitis and

miliary TB occurring after a shorter interval than pulmonary

or other extra-pulmonary sites.

Reactivation several decades after initial infection occurs

[61], but as observational studies with close follow-up

rarely continue beyond 10 years it is difficult to assess how

common reactivation is outside this timeframe. In addition,

conventional observational studies make it difficult to evalu-

ate whether disease relates to the initial infection event or

subsequent reinfection. Borgdorff et al. [62] applied a molecu-

lar epidemiology approach (using restriction fragment length

polymorphism of IS6110 þ/2 polymorphic GC-rich

sequence) to 12 222 cases of TB over a 15-year period in the
Netherlands and identified 1095 linked secondary cases

from 688 source cases. The median incubation period (time

between predicted date of infection and onset of symptoms

in the secondary case) was calculated to be 1.26 years, and

the serial interval (time between symptom onset in source

and secondary case) was found to be 1.44 years with 83%

of secondary cases occurring within 5 years of the source

case and more than 95% within 10 years [62].

Studies of immigrants from high to low burden countries

provide further insight. Risk of TB is especially high in the

first few years following migration, but migrants remain at

higher risk of TB for decades after entry [63]. It is difficult

to establish whether this relates to delayed reactivation or

(re)infection following recent transmission either from visit-

ing country of origin or from the local community.

However, McCarthy [64] has shown that diagnosing TB in

migrants is very rare more than 15 years after arrival if they

have low risk of re-exposure. In this study, of 230 migrants

from high burden countries in Asia diagnosed with TB in

London in the 1980s (low burden setting), 10.4% had arrived

in the UK 11–15 years previously and 5.6% more than 15

years previously; however, in those who had never returned

to Asia since migrating and had no known UK TB contact,

only 3.9% had arrived 11–15 years previously and 0.8%

more than 15 years previously [64].

Furthermore, the observation that the elderly in low TB

burden settings have a higher incidence of TB is often, possibly

incorrectly, interpreted as providing evidence of prolonged

latency and reactivation following immunosenescence. How-

ever, careful evaluation of birth cohorts shows that this

apparent increased risk is an artefact of falling transmission,

and younger adults are still invariably at greater risk of TB

than the elderly [65]. These data show that the common view

that reactivation TB disease often occurs decades after initial

infection may be overstated; the majority of cases occur

within 18 months of infection and disease resulting from reacti-

vation more than 10 years after infection may be rare. The risk of

disease is also not constant over time; following a single



Box 2. The nature of Mtb in latent infection.

Mtb adapts to environmental triggers such as hypoxia, nutrient starvation and reduced pH encountered during infection by

altering metabolism and arresting replication [49]. Adaptation often includes transient transcriptional activation of a charac-

teristic set of approximately 50 genes under the control of the DosR ‘dormancy’ regulator, together with additional genes

appropriate to the specific environmental cue [50]. The products of these induced genes are currently being explored as

potential biomarkers. Resumption of replication following exposure to a more favourable environment is presumed to

involve analogous transcriptional and metabolic reprogramming, including cell wall changes mediated by a family of trans-

glycosylase enzymes [51]. The ability of Mtb to persist in a reversible non-replicating state is a key virulence factor but the

direct equation of clinical latency with non-replicating mycobacteria and active disease with replicating mycobacteria is an

oversimplification. Although active disease is characterized by uncontrolled increases in bacillary numbers, imaging and

autopsy studies show that there are numerous micro-environments that exhibit varying degrees of progression and healing.

A partially overlapping heterogeneous spectrum is seen in latent stages of infection. The prolonged courses of treatment

required to prevent relapse following treatment of active TB are thought to be due to persistent populations of bacilli,

whereas the efficacy of isoniazid as preventive therapy in latent infection is thought to be due to its effect on replicating bacilli.

In short, although absolute numbers and proportion clearly differ it seems likely that both replicating and non-replicating

bacilli are present in both latent infection and active disease.
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infection, the risk is 12% over a person’s lifetime; if no disease

develops after 5 years the lifetime risk might only be 2% and

after 10 years 0.5%.

It is likely that at least in some people for whom there is a

prolonged time interval between infection and eventual

disease presentation, episodes of subclinical reactivation had

occurred much sooner. Evidence for this comes from

twentieth century mass chest radiograph (CXR) screening pro-

grammes, which identified asymptomatic persons with no

previous history of disease but with apical fibrotic scarring

felt to represent inactive or arrested TB. These individuals

were up to 15 times more likely to develop TB than those

having normal CXR, with the risk of developing TB steadily

falling over a 5–10 year period of observation [66]. In addition,

studies in Europe and America at a time of rapidly falling TB

incidence showed that up to 70% of persons developing TB

(with no history of TB and usually no clear contact history)

had evidence of fibrotic scarring on previous CXR [67,68].

This suggests that, in a proportion of people, the disease

may follow a cyclical waxing and waning course with earlier

reactivation initially arrested by the host delaying disease pres-

entation. In addition, it is clear that the subclinical phase of

active disease prior to clinical presentation may be several

months, as evidenced by the demonstration of culture positiv-

ity in asymptomatic persons. In HIV-infected persons in high

burden settings, prevalent asymptomatic TB has been shown

to be present in up to 8.5% [69].

(b) Immunosuppression
A number of conditions are associated with increased risk of

progression of TB, with HIV infection and anti-tumour necrosis

factor (TNF) therapy being two well-documented examples.

The effect of anti-TNF therapy is particularly striking in the

macaque model of latent TB treatment, with anti-TNF resulting

in almost universal reactivation in animals that had initially no

signs or symptoms of active disease for at least six months from

the time of infection [70]. In humans treated with anti-TNF

therapy, especially with infliximab, the risk of TB is increased

initially up to 20-fold with 43% of TB cases occurring within

the first 90 days of administration of anti-TNF therapy, demon-

strating how rapidly active disease can be precipitated [71].

However, reactivation is by no means universal. In an evalu-

ation of the implementation of LTBI screening prior to
anti-TNF therapy in Spain, 56 patients with positive TST

(more than 5 mm) were identified who did not receive any iso-

niazid prophylaxis and in only one case did TB occur following

anti-TNF treatment [72]. The impact of HIV on latent infection

can be more challenging to evaluate as the majority of HIV/TB

studies are performed in high burden settings where reinfection

complicates understanding of the natural history of a single

infectious episode. In studies in low burden settings, wide-

spread ART use can also be a confounder. In addition and in

contrast to anti-TNF therapy, HIV-associated immunosuppres-

sion is slowly progressive. In studies from the high burden

setting of the South African mines, the risk of TB infection has

been shown to double within the first year, with Mtb strains

significantly more likely to be unique within 2 years of HIV-ser-

oconversion than lateron in the disease, suggesting that TB may

more likely be precipitated by reactivation early in the course of

HIV and that recent reinfection with subsequent rapid pro-

gression occurs in more advanced immunosuppression [73].

Studies from low prevalence settings (Spain and Switzerland)

suggest that the rate of TB in HIV-infected persons who are

TST positive but untreated reduces over time, with most of

the excess cases of TB compared with TST negative occurring

within the first 2 years of follow-up; in total, only 10–12% of

this very high-risk group developed TB over a follow-up

period of up to 5 years [74,75].

(c) Protection from reinfection
Although latently infected persons are at greater risk of devel-

oping disease through reactivation than are those uninfected

there is some evidence that at least a proportion are protected

against subsequent (re)infection. Andrews et al. [76] reviewed

18 studies in which 19 886 persons with or without latent TB,

as evidenced by tuberculin reactivity, were followed up for

active disease in the absence of intervention. The majority of

these studies were published before 1950, and largely involved

nursing and medical students entering clinical practice and

exposed to extremely high annual rates of infection (median

33.6%). The incidence of disease in those with LTBI at entry

was 5.1/1000 person-years and in those uninfected at entry

was 18.2/1000 person-years. Once adjustments were made for

reactivation and average timing of infection, risk reduction in

those with LTBI was found to be 79%. Historical healthcare set-

tings clearly represent an extreme scenario, however other
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approaches have also suggested a protective effect of infection.

Using national datasets over long periods of time to model the

dynamics of TB, Vynnycky & Fine [60] from data for England

and Wales 1900–1990 predicted a 16–41% protection from an

initial infection against reinfection, and Sutherland et al. [77]

from data for the Netherlands predicted 63–81% protection.

Taking an alternative strategy, Brooks-Pollock et al. [78] used

cross-sectional household data from Lima, Peru from 1996–

2002 to propose 35% protection. In detailed studies of reinfec-

tion in the rabbit model, Lurie [79] demonstrated that control

of a re-infecting strain in previously infected rabbits was

mediated by tissue resident mononuclear cells, with efficiency

of control relating to the extent of the primary lesion from the

initial infection. The mechanism of protection in humans is

not known but clearly an improved understanding of this

could greatly facilitate vaccine development.
5. Integrating the spectrum of tuberculosis with
natural history

We and others have suggested that asymptomatic people

considered to have latent TB might be better considered

as part of a spectrum of infection states where at one end
infection may have been eliminated, while at the other end dis-

ease may be active but in a subclinical form, and between these

two extremes infection is controlled in a quiescent state [80–84].

When carefully considering the natural history of infection, it

seems plausible that soon after initial infection and immune

sensitization there are three main possible outcomes influenced

by predisposing factors that determine the course of infection

during this critical phase and alter the proportions in each

group (figure 3). Some may initially develop primary progress-

ive disease; this may be a very small proportion in adults but

would likely be more common in advanced immunosuppres-

sion and infants. A second group (a high-risk group—the

main group from which reactivation disease arises) enter a

more unstable state with infection taking a waxing–waning

course during which periods of progression triggered by

precipitating factors may be followed by control (which may

lead to evidence of immunopathology) or the development of

clinical disease. Some precipitating factors may be more

potent than others; very potent precipitating factors (such as

anti-TNF and HIV) may have the effect of causing rapid pro-

gression over a short time interval. It is also in this group that

isoniazid preventive therapy may be most effective. A third

group may rapidly and effectively control infection and

eventually may even sterilize the organism and may be at
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(a) Predisposing and precipitating factors
Some predisposing and precipitating factors may overlap (figure

3). Many predisposing factors from the host side are known and

can be considered as generally immunosuppressive (HIV, mal-

nutrition, chronic kidney disease, type 2 diabetes mellitus, etc.)

but many more may be unknown, poorly characterized, have

more subtle effects and may or may not be genetically mediated.

In particular, rather than just immunosuppression alone it is

becoming more apparent that the extremes of the immune

response may lead to detrimental outcome in TB, with a more

balanced response being optimal (the so-called ‘Goldilocks

effect’); weak responses may lead to unopposed bacillary replica-

tion whereas aggressive responses may lead to tissue damage

and necrosis which may provide a more favourable environment

for the bacillus. One of the implications of this, when considering

biomarker discovery for novel diagnostics (see below), is that

there may be at least two distinct correlates of risk.

Leukotriene (LT) A4 hydrolase (LTA4H) mediates the bal-

ance of pro-inflammatory eicosanoid LTB4 and anti-

inflammatory lipoxin A. Zebrafish larvae in which LTA4H is

over- or under-expressed are made hyper-susceptible to

Mycobacterium marinum infection compared with wild-type

either by low levels of LTA4H resulting in increased lipoxin A

and impaired TNFa production, or excessive LTA4H resulting

in increased LTB4 and increased TNFa production [85].

Humans who are heterozygous for a single-nucleotide poly-

morphism of LTA4H promoter rs17525495 (C/T) appear to

have the best clinical outcome from TB meningitis; those who

are homozygotes for the T allele (T/T) have increased LTA4H

expression and inflammatory cerebrospinal fluid, but derive

significantly greater benefit from dexamethasone therapy com-

pared with the C/C genotype [85–87]. In humans, plasma

prostaglandin E2 and lipoxin A levels likewise correlate with

disease susceptibility in a similar bimodal fashion with both

insufficient and abundant responses tied to disease exacerbation

(Mayer-Barber & Sher 2014, unpublished results, personal

communication).

Another intriguing and poorly understood predisposing

factor is age. It is a consistent and striking feature of TB that

the age of infection affects the risk of subsequently developing

disease [56,88]. Infants and young children, especially those

less than 2 years, are at considerable risk of developing disease

following infection. Older children (5–10 years old) have con-

sistently been shown to be at the lowest risk of TB following

infection especially, whereas peri-pubescent adolescents and

young adults are at much greater risk of developing cavitary

TB compared with children less than 10 years old [56,88]. It

has been suggested that this may relate to the immunoendocrine

effects mediated by the balance between dehydroepiandroster-

one (DHEA—a precursor of sex steroids) and glucocorticoids

[89]. DHEA levels start increasing from 7 years old, peak in

early adulthood and reduce in older adults [88]. One of

DHEA’s many effects is as a glucocorticoid antagonist, and

the cortisol : DHEA ratio has important immunological conse-

quences. Recently, DHEA has been shown to influence

dendritic cell function to promote Th1 responses by increasing

interleukin (IL)-12 and diminishing IL-10 production following

Mtb stimulation, with increased expression of MHCI, MHCII

and CD86 expression resulting in enhanced T cell proliferation
and IFNg production [90]. So it seems plausible that pro-inflam-

matory responses in healthy adolescents and young adults have

detrimental effects leading to cavitary disease, anti-inflamma-

tory responses in infants lead to their inability to control

replication and there is a more optimal balanced response in

older children.

A further incompletely understood historical observation

recently being revisited is the effect of monocyte : lymphocyte

ratio (M : L) on risk of disease. It has been found in both

animal models and clinical observation that extremes of

both low and high M : L result in a greater risk of developing

TB, but what is still not clear is whether this is a predisposing

factor [91] or a marker of progressive disease as TB treatment

normalizes the M : L ratio [92].

While some precipitating factors may be well known

and potent resulting in rapid progression of the at risk group

(e.g. anti-TNF therapy), some may just contribute to a fluctuating

course triggering disease in a minority. To consider an example,

an interesting observation is the seasonality of TB with increased

case notification that can be 20–25% higher in spring/summer

compared with autumn/winter [93–96]. This is striking for an

infectious disease with relatively prolonged and variable incu-

bation. In common with other respiratory pathogens, one

explanation would be behavioural, with winter crowding lead-

ing to greater transmission, but modelling evidence and

analysis of unique and clustered Mtb strains suggest that this

cannot fully explain seasonality of TB [97,98]. A seasonal precipi-

tating factor such as vitamin D deficiency or viral respiratory

infection (e.g influenza) is an alternative explanation. Vitamin

D, synthesized within the skin requiring UV light, acts as an

immunomodulatory and anti-inflammatory agent primarily

exerting its effect on the macrophage, facilitating enhanced con-

trol of mycobacteria through pleiotropic mechanisms [92,99]. A

number of clinical observations provide some support for the

role of vitamin D deficiency in inducing reactivation. TB patients

are well documented to have significantly lower vitamin D levels

than healthy household controls [100,101], and the spring/

summer peak in TB notifications is preceded by a winter

trough in vitamin D levels in Cape Town [102]. There is some evi-

dence to suggest that seasonality is more pronounced in foreign-

born cases (who may be at greater risk of vitamin D deficiency

owing to skin tone) compared with native cases in Europe

[103,104]. An alternative seasonal precipitant could be viral infec-

tion. It has recently been shown that the type 2 interferon (IFNg)

response critical for mycobacterial control can be impaired by the

downstream effects of type 1 interferons (IFNa/b) [105]. It has

therefore been hypothesized that viral respiratory infections

inducing a type 1 interferon response could lead to reactivation

by impairment of type 2 interferon facilitated control of Mtb. In

the mouse model, mycobacterial growth is enhanced and survi-

val decreased in mice previously exposed to influenza by a

mechanism dependent on type 1 interferon signalling [106]. In

addition, historical observations and modelling of the 1918 influ-

enza pandemic suggest a negative impact of influenza on TB

[107]. It is also possible that aside from host factors, variability

of the bacillus may influence rate of progression and disease out-

come, and it is worth noting that there is clear evidence for

diversifying selection in genes of the bacillus whose functional

roles are less than clear [108].

Having a fuller understanding of these predisposing and

precipitating factors and the magnitude of their effects might

allow us to consider the impact of novel intervention strat-

egies: for instance, whether widespread or targeted vitamin
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D replacement and/or influenza vaccination may impact the

incidence of TB.
6. Novel diagnostic and preventive treatment
strategies for LTBI

Current approaches to management of latent TB centre on

those at greatest epidemiological risk of progressing to TB,

namely close contacts of active TB, HIV-infected and other

persons about to undergo, or with established, immunosup-

pression. Following diagnosis of latent TB, preventive

treatment is most commonly six to nine months of isoniazid

or a three month course of rifampicin or rifapentine and iso-

niazid [82] (in HIV-uninfected persons). However, in many

low- and middle-income countries with the highest burdens

of TB, many of these high-risk groups do not receive preven-

tive therapy, especially household contacts. In these settings,

operational research may enhance the better implementation

of clinical trials evidence and recommendations. However, to

make significant progress towards TB elimination will also

require providing preventive treatment to an even wider

group of latently infected persons. One of the critical barriers

to this is the acceptability of the current intervention to indi-

viduals at risk as well as healthcare professionals and policy

makers. This is to a large extent influenced by the prolonged

duration of treatment and the high NNT to prevent a case of

active disease; hence acceptability should improve if either

or both of these are improved (figure 4). An inexpensive

on-the-spot diagnostic that provided an accurate assessment

of likelihood of progression coupled with a single-dose

prophylactic would be game-changing for TB control and

enable mass testing and treatment programmes with a

realistic chance of achieving eradication.

More predictive diagnostic tests are a goal of TB research

agendas but how these tests might be implemented in practice

also requires careful evaluation. The perfect diagnostic for

latent TB would be a cheap, low resource, point-of-care test
with very high positive and negative predictive value that

maintained sensitivity in immunocompromised persons,

notably HIV infection and children. However, it is worth

noting that a single test cannot be both highly predictive for

active TB and a sensitive marker of exposure as these test

characteristics are to a degree a mutually exclusive. Another

consideration is over what period of time should these tests

be predictive? It may be substantially easier to develop tests

(from both a development and validation perspective) that

are predictive over a short period of time—e.g. risk over 12

months rather than predictive of life time risk—as it may be

over this time frame that transition into a subclinical phase

prior to symptomatic presentation occurs with characteristic

changes in the host response and bacillary numbers and meta-

bolic state. Such shorter term predictive tests may be of

particular use in high burden settings where reinfection is

common and in HIV-infected persons and other immunocom-

promised groups (such as in type 2 diabetes mellitus and

chronic renal failure) where regular contact with healthcare

many allow for regular screening. In addition, recent contacts

of TB could be followed up annually during the period of great-

est risk. Optimal test characteristics might change as the

elimination phase progresses; understanding these require-

ments will be helped greatly by models showing the impact

of different types of tests in different settings.

(a) Markers of exposure
As discussed, TST and IGRA are poorly predictive but also

are suboptimal measures of Mtb exposure. Both TST and

IGRA show evidence of spontaneous reversion over time

and hence some people previously exposed to and immune

sensitized by Mtb may have a negative test. A proportion

of these individuals may be identified using a two-step test-

ing strategy where the initial negative TST boosts the

immune response so subsequent TST or IGRA reverts to posi-

tive [109]. In addition, the sensitivity of TST and IGRA for

active TB infection is only 70–90% [110–112]; not withstand-

ing arguments as to why immunodiagnostic tests might be

compromised in someone with active TB, a test that is not

able to identify the most heavily infected individuals leaves

room for improvement. A more sensitive test for Mtb

exposure would give a better understanding of TB trans-

mission dynamics and more accurate estimation of the

annual rate of infection. Because IGRAs detect IFN-g pro-

duction after short-term incubation (16–24 h), they identify

primarily ESAT6/CFP10-specific effector cells and it is poss-

ible that prolonged assays measuring alternative cytokines or

flow cytometric assays could identify central memory popu-

lations that may be a better marker of exposure and history of

immune sensitization than the currently available tests.

(b) Predictive markers
Predictive biomarkers could be developed using two broad

approaches. Careful follow-up of an at-risk population over

time during which some develop TB might allow identifi-

cation of biomarkers that were correlates of risk, although

such natural history approaches would not only require

very large numbers but would also have considerable ethical

considerations unless carried out in groups where obser-

vation is standard of care, such as contacts of multi-drug

resistant (MDR)-TB, where guidelines do not recommend

preventive therapy (e.g. over 35-year-olds in some countries)
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or in placebo arms of intervention studies. Another approach

would be to identify biomarkers for people at the transition

of latent to active disease with subclinical and minimally

active pathology or evidence of immunopathology (e.g. fibro-

tic scaring) and then validate these markers prospectively.

The most useful predictive biomarkers will most likely be

mycobacterial products or markers of host response ident-

ified within blood or urine or through skin testing. ‘Omics’

approaches are useful as exploratory tools to identify key

components of diagnostic tests; transcriptomic approaches

have been particularly successful at differentiating the

extremes of active and latent TB [113,114], but these signa-

tures may not be predictive of active TB if the signatures

relate to response to disease process itself. More predictive

tests would certainly be a huge advance allowing treatment

decisions to be based on a biological as well as epidemiologi-

cal markers of risk, but it is sobering to note how slow

progress in the cancer field has been in developing markers

of early detection into diagnostic tests. Such biomarkers

will be challenging to develop, requiring a large amount of

support to move down the pipeline from concept through

to development, validation and implementation; but unlike

vaccine, drug and diagnostic tests for active TB, no such

pipeline exists for predictive tests for latent TB.
(c) Drugs
Shorter drug regimens are highly desirable for treatment of

both latent and active TB, with the current prolonged treatment

duration required to ensure that recrudescence of persisting

organisms does not occur after cessation of therapy. In addition,

a prolonged treatment course is associated with poor treatment

adherence in routine settings. Drugs that contribute most to

treatment shortening of active or latent TB (rifampicin and pyr-

azinamide) have the most potent sterilizing ability (usually

determined by evaluating relapse rate in the murine model),

whereas isoniazid, although rapidly bactericidal, largely acts

on replicating bacilli and has poor sterilizing activity [115]. As

an alternative strategy to shortening treatment for LTBI, rather

than targeting persisting organisms, might be to provoke resus-

citation of non-replicating bacilli and couple this with rapidly

bactericidal therapies such as isoniazid. Such approaches will

require a far more sophisticated understanding of the mechan-

isms of resuscitation and ability to define the metabolic states of

single organisms.

The optimal duration of isoniazid as preventive therapy is

nine months [116]; with addition of rifampicin or rifapentine

this reduces to three months and rifampicin combined with

pyrazinamide is effective after two months of administration

(although unacceptable toxicity prevents widespread use of

this regimen) [117]. There are several novel or re-purposed

drugs in later stages of the TB drug pipeline [118] that have

impressive sterilizing ability either alone or in drug combi-

nations (usually in pyrazinamide-containing regimens).

Bedaqualine (recently FDA approved for active MDR-TB) and

sutezolid (an oxalozidinone in phase 2 studies) seem most

promising in this respect. Nitroimidazole derivatives (delama-

nid and PA-824) and moxifloxacin are also possibilities [119].

Whether reductions in treatment duration beyond two months

could be feasible is not certain, however it is possible that this

pipeline provides several options for preventive treatment in

drug-resistant TB contacts. A major consideration for novel regi-

mens in addition to cost [120] is toxicity and side effects, which
are a major factor when treating otherwise asymptomatic per-

sons (as demonstrated by pyrazinamide), especially while we

are unable to more precisely define who will derive greatest

benefit from preventive therapy.

A further challenge is how to best evaluate novel LTBI regi-

mens. Currently, the only endpoint for clinical trials is the

absence of disease and hence in order to demonstrate clinical

efficacy studies they will need large numbers and prolonged

follow-up. A surrogate marker of clinical response (analogous

to 14-day early bactericidal activity or two-month culture con-

version for active TB) may allow for more rapid evaluation of

different regimens to select which should go forward to

larger clinical studies. Peripheral blood biomarkers that signify

treatment success for LTBI would be very useful in this regard.

An alternative approach that is being developed similar to

oncology studies is the use of PET/CT imaging to evaluate

response of therapy. 18F-Fluorodeoxyglucose (FDG) is the

most widely used tracer, is a non-specific marker of metabolic

activity and is taken up avidly by activated neutrophils and

macrophages [121]. Sites of active TB even in the absence of

symptoms accumulate FDG avidly and a number of studies

have demonstrated that uptake is markedly reduced following

TB treatment [122–125]. Tracers that are more specific for Mtb

would be a great advance and these are currently in early

stages of development.
(d) Post-exposure vaccines and immunomodulation
TB vaccines can be administered either pre-infection, designed

to prevent infection from occurring, or post-infection, designed

to prevent latent infection progressing. H56 is a multistage vac-

cine comprising the Ag85B, ESAT-6 and Rv2660 antigens, is

one of the first vaccines to be designed to be used post-infec-

tion, and is soon entering phase I/IIa studies in South Africa

in latently infected and uninfected adults [126].

However, recently the MVA85A vaccine, a novel TB vac-

cine (administered pre-infection) that was in the most

advanced stage of clinical development, yielded disappoint-

ing results that demonstrated safety but no significant

efficacy over placebo in preventing TB when administered

to BCG-vaccinated, HIV-negative infants with no evidence

of latent TB infection, in a high burden setting [127]. The

resulting debate has highlighted how limited our under-

standing of protective immunity in humans is and the

dangers of extrapolating findings in animal models to clinical

practice [128]. Our understanding of how to use a vaccine to

safely prevent reactivation of an established latent infection is

even more limited, as there are fewer appropriate animal

models and there is always concern about the induction of

Koch reactions, where rapid induction of vigorous immune

response in persons with an asymptomatic subclinical infec-

tion may result in immunopathology and symptomatic

deterioration. It is critical that we develop a better under-

standing of what the immunological correlates of protection

from disease are in humans to inform vaccine design. One

approach may be in the careful evaluation of the hetero-

geneous effects of vaccination either within a single trial or

between trials performed in different populations and the

correlation with clinical outcomes. Another approach would

be to try and better understand the protective effects of natu-

ral infection especially the immunological basis for this (see

above), or to characterize the immunological differences in

response to infection between older children and young
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adults, who have the best and worse outcomes following

infection, respectively (see above). In particular, if we are to

develop vaccines that prevent reactivation or successfully

eliminate latent infection, we need to better understand

the immunological mechanisms that precipitate reactivation

and control in those with unstable latent infection, which

may require refinement of existing animal models to more

accurately reflect the natural history of TB in humans.

An alternative and innovative approach would be to com-

bine immunomodulation with anti-tuberculous treatment as a

method to shorten therapy. This immunomodulation could

take the form of either a vaccine or a drug. RUTI is a novel vac-

cine comprising heat inactivated, liposomed fragments of Mtb

grown under different conditions of stress designed to

be administered after one month of chemotherapy of LTBI

and facilitate immune clearance of persisting bacilli [129].

The vaccine is currently in phase 2 studies in HIV-infected

and -uninfected persons with LTBI (http://clinicaltrials.gov/

show/NCT01136161)
0130437
7. Concluding remarks
A coordinated strategy will be required to effectively tackle

the reservoir of latent infection. Improved data are needed

to more accurately estimate the scale of the problem and
quantify the number of new infections occurring each year,

and a redoubling of effort will be required to reduce this as

far as possible by implementing currently recommended

interventions. However, in order for widespread treatment

of latent TB to be acceptable to the public, healthcare provi-

ders and policy makers, major advances on the currently

available diagnostic and interventional tools will be required.

Progress in identifying who is most likely to reactivate and

how this occurs will assist the development of more predic-

tive diagnostic tests allowing interventions to be focused on

those that will benefit most. The development of drugs that

effectively target and rapidly sterilize the subset of persistent

bacilli should allow for significant reductions in the duration

of preventive treatment. Both of these should improve accept-

ability of more widespread treatment of latent infection. In

addition, greater understanding of who is protected from

reinfection and how this occurs would provide key pieces

of knowledge to facilitate progress with development of

effective vaccines and immunomodulatory agents that

could have a major impact.

The aim to eliminate TB by 2050 is a bold one and the

development of the post-2015 TB strategy and targets pro-

vides an opportunity to identify the critical gaps in our

knowledge and to focus the scientific community, policy

makers, advocates and funding agencies on achieving this

challenging goal.
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